Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7990): 57-63, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057568

RESUMO

Despite tremendous progress in research on self-assembled nanotechnological building blocks, such as macromolecules1, nanowires2 and two-dimensional materials3, synthetic self-assembly methods that bridge the nanoscopic to macroscopic dimensions remain unscalable and inferior to biological self-assembly. By contrast, planar semiconductor technology has had an immense technological impact, owing to its inherent scalability, yet it seems unable to reach the atomic dimensions enabled by self-assembly. Here, we use surface forces, including Casimir-van der Waals interactions4, to deterministically self-assemble and self-align suspended silicon nanostructures with void features well below the length scales possible with conventional lithography and etching5, despite using only conventional lithography and etching. The method is remarkably robust and the threshold for self-assembly depends monotonically on all the governing parameters across thousands of measured devices. We illustrate the potential of these concepts by fabricating nanostructures that are impossible to make with any other known method: waveguide-coupled high-Q silicon photonic cavities6,7 that confine telecom photons to 2 nm air gaps with an aspect ratio of 100, corresponding to mode volumes more than 100 times below the diffraction limit. Scanning transmission electron microscopy measurements confirm the ability to build devices with sub-nanometre dimensions. Our work constitutes the first steps towards a new generation of fabrication technology that combines the atomic dimensions enabled by self-assembly with the scalability of planar semiconductors.

2.
Opt Express ; 31(11): 17424-17436, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381477

RESUMO

We design and fabricate a grating coupler for interfacing suspended silicon photonic membranes with free-space optics while being compatible with single-step lithography and etching in 220 nm silicon device layers. The grating coupler design simultaneously and explicitly targets both high transmission into a silicon waveguide and low reflection back into the waveguide by means of a combination of a two-dimensional shape-optimization step followed by a three-dimensional parameterized extrusion. The designed coupler has a transmission of -6.6 dB (21.8 %), a 3 dB bandwidth of 75 nm, and a reflection of -27 dB (0.2 %). We experimentally validate the design by fabricating and optically characterizing a set of devices that allow the subtraction of all other sources of transmission losses as well as the inference of back-reflections from Fabry-Pérot fringes, and we measure a transmission of 19 % ± 2 %, a bandwidth of 65 nm and a reflection of 1.0 % ± 0.8 %.

3.
Nano Lett ; 23(5): 1629-1636, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826991

RESUMO

An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle's size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...